RAM PIPE REQUAL:

A Risk Assessment & Management Based Process for the Requalification of Marine Pipelines

Robert Bea

Marine Technology & Management Group University of California at Berkeley bea@ce.berkeley.edu

Topics

- RAM PIPE REQUAL
- Reliability Approach
- Level 2 examples: corrosion
 - Un-instrumented
 - Instrumented

RAM PIPE REQUAL Project

Develop guidelines for requalification of marine pipelines

Associated

RAM

Risk Assessment

- Risks: likelihoods & consequences
- Hazards: uncertainties, threats
- Knowable & unknowable hazards
- Assessment: identify & evaluate
- Alternatives: likelihoods, consequences, both
- Observe: improve & revise

Risk Management

- Alternatives: evaluate, costs, benefits
- Culture: production & protection
- Identify: alternatives
- Resources: abilities, money, time
- Implementation: plan, organize, lead, control
- Revise: monitor, assess, modify

Accidents are caused by people and so are successes

Organizations have major influences

CONTRIBUTING EVENTS

- Organization Errors 80 %
- Other Factors 20 %

Primary factors

Approaches

REACTIVE empirical frequent accidents

Three key strategies

- Reduce the likelihood of HOE
- Increase detection & remediation of HOE
- Reduce the effects of HOE

Quality, safety, & reliability

QUALITY ability to satisfy requirements Safety Serviceability acceptability of risks use for purpose for conditions **Durability** Compatability freedom from unanticipated acceptability of impacts degradation

RAM PIPE REQUAL

RAM PIPE REQUAL Level 2 Method

- Base on physics mechanics
- Simplified models
- RAM approach
- Performance databases
- Test data verified
- Instrumented & un-instrumented
- Linguistic & quantitative variables

Level 2 Burst Capacity Damaged / Defective

- Intact: $p_B = S_{II} (t / R)$
- Corrosion

$$\mathbf{p_B} = (\mathbf{S_U} / \mathbf{SCF_C})(\mathbf{t} / \mathbf{R})$$

$$SCF_C = 1 + 2(tc / R)^{0.5}$$

tc

t

Pf = P [Demand (S) " Capacity (R)]

Nominal Values & Biases

probability

$$p_B = p_O (B_{pO} / B_{pB}) \exp (\beta \sigma) =$$
 $p_O B \exp (\beta \sigma)$

Bias = actual / nominal

Gulf of Mexico Pipelines: Pf " 1 to 2 E-3 per year

Corrosion is the Primary Problem

Corrosion Rates from Database

Time Dependent Reliability

Corrosion: Instrumented

Probabilities of Detection

Measurement Accuracy

$$t_{C50} = t_{CD}$$
 (B_{Dt}), $V_{tC50} = 25$ % to 35 %

20-inch gas line instrumented Pig C

Probabilities of Failure: Detected & Not Detected

Summary

- RAM PIPE REQUAL approach to requalification of pipelines
- Corrosion is the primary problem
- Need to develop industry database on performance of marine pipelines
- RAM PIPE REQUAL project continuing with industrial guidance

POP (Performance of Offshore Pipelines) Project

- Pipelines proposed for abandonment
- In-line instrumented and un-instrumented
- Predictions of burst pressures & defects
- Hydrotest pipelines to failure & recover
- Perform material and geometry tests
- Revise predictions

Contact James Wiseman at: james@winmarconsulting.com